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ABSTRACT

Estimation of accurate head-related transfer functions (HRTFs) is
crucial to achieve realistic binaural acoustic experiences. HRTFs
depend on source/listener locations and are therefore expensive and
cumbersome to measure; traditional approaches require listener-
dependent measurements of HRTFs at thousands of distinct spatial
directions in an anechoic chamber. In this work, we present a data-
driven approach to learn HRTFs implicitly with a neural network that
achieves state of the art results compared to traditional approaches
but relies on a much simpler data capture that can be performed
in arbitrary, non-anechoic rooms. Despite that simpler and less
acoustically ideal data capture, our deep learning based approach
learns HRTF of high quality. We show in a perceptual study that
the produced binaural audio is ranked on par with traditional DSP
approaches by humans and illustrate that interaural time differences
(ITDs), interaural level differences (ILDs) and spectral clues are
accurately estimated.

Index Terms— binaural synthesis, auralization, head-related
transfer function, deep learning, spatial audio

1. INTRODUCTION

In many immersive multimedia applications, such as virtual real-
ity, gaming, spatial music, etc., the head related transfer functions
(HRTFs) are required to accurately render binaural audio. HRTFs
are functions which parameterize the acoustic transfer from a sound
source to the ears of a listener. More specifically, they characterize
the listener induced changes on the sound field and incorporate cues
for sound localization such as interaural time and level differences
(ITD, ILD) and spectral cues that arise due to the interaction of pin-
nae, head and torso with the sound field [1-3]. When a sound signal
is filtered with a pair of HRTFs, one corresponding to the path from
source to the left ear and the other to the right, and presented through
headphones; it gives the listener the impression that the sound source
is located in the 3D space [4] (see Figure 1a).

HRTFs can be obtained by means of numerical calculations [5,
6]. To date, however, anechoic measurement is still a common and
the most accurate approach, in particular for individual HRTFs of
human subjects. Clean, high-quality HRTFs are traditionally mea-
sured in an anechoic chamber and require listener-specific record-
ings at thousands of spatial positions [7, 8]. While these require-
ments are crucial to enable traditional binaural modeling, data cap-
tures are expensive and require highly specialized equipment and
capture stages. In this work, we propose a data-driven deep learn-
ing approach that circumvents the need for such expensive captures
and proves to generate realistic binaural audio with acoustically less
treated yet easier to capture data. Moreover, the proposed approach
can cope with smoothly changing source/listener positions and does
not require physically inaccurate interpolation techniques that are
commonly used in traditional approaches.
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Fig. 1: Binaural synthesis systems. (a) Traditional binaural syn-
thesis system: input mono signal x(t) is filtered by directional fil-
ters h'"(t) and h"€"(¢) to produce the binaural signals 4'"(¢) and
Yy 2 (¢), (b) our proposed binaural system using a neural network
(NN): takes the mono signal and the source-listener spatial configu-
ration as inputs and outputs binaural signals. Rs and R; refers the
source and the listener’s head 3D orientations, respectively.

While the proposed approach is fully data-driven, traditional
methods require to deal explicitly with problems due to limited
spatial directions. These can be alleviated by forming a continuous,
functional representation from sparsely sampled measurements, i.e.,
expressing the HRTFs mathematically as a continuous function of
direction [9]. Methods based on (bi)linear interpolation or cubic
spline interpolation [10] that use neighboring HRTFs measurements
do not provide sufficiently accurate or high quality HRTFs from
sparse measurements, due to the high spatial complexity of the
HRTF, especially at high frequencies [11]. Recently more sophis-
ticated methods based on the analysis and decomposition of the
entire set of measured HRTFs have been suggested for efficient
representation of HRTFs, e.g., using spectral domain [12] and spher-
ical harmonics decomposition [9, 13]. However, these methods are
highly constrained on the number and distribution of measurement
directions. Moreover, they involve an ill-posed matrix inversion
problem that lacks stable solution with respect to data perturbations,
and often require arduous regularization [14].

Departing from the conventional signal processing pipeline,
where the HRTFs are identified using deconvolution or decorrelation
process from anechoic binaural measurement [15] and interpolation
needed during synthesis is performed by using one of the afore-
mentioned methods; this paper explores a new machine learning
approach. Our motivation is based on the fact that machine learning
models can efficiently encode and interpolate data by leveraging
domain-specific appearance of signals, and do not impose implicit
assumptions (e.g., linearity, minimum phase) constraining conven-
tional HRTFs identification and interpolation methods. Thus, we
formulate the problem as a task of estimating masking functions
that transform a mono signal into binaural signals. To solve this
task, we propose a temporal convolutional neural network (TCN),



that depending on the spatial configuration between the source and
the listener, predicts the transformation mask —see Figure 1b and
Figure 2a. We term the masks as implicit HRTFs since they serve
the same purpose as the traditional HRTFs. Application of the mask
to the input signal naturally leads to the generation of binaural audio
output. At training time, we optimize the network to predict binaural
audio such that the HRTFs — for which no ground truth is available
— are learned implicitly.

Note that our approach is the first to address the task of learning
HRTFs implicitly. There has been some initial work [16-20] where
neural networks are used to address mono-to-binaural up-mixing
conditioned on video information. These methods, however, treat
binauralization as an upmixing task, i.e. the input is the mixed bin-
aural signal, and therefore can not model accurate ITDs and ILDs.
By contrast, our model learns to generate binaural sounds depending
on source-listener spatial data. Only recently, a WaveNet-based bin-
aural network has been proposed [21] that outperforms traditional
HRTF-based techniques; however, the model is domain-specific to
speech signals and generally does not provide a solution to estimate
general HRTFs on wide-band signals. Our approach, in contrast,
learns the signal transformation functions by design and is not con-
strained to a specific signal domain like speech, as we illustrate in
the experiments.

2. PROBLEM FORMULATION

Our main goal is to learn the complex transformation that the sound
undergoes as it travels from a position in space and arrives at lis-
tener’s two ears. We formulate it as a binaural synthesis problem
that estimates the transformation of an input mono-source signal
x(t) 2 RT with T samples in time-domain to binaural signals for
the left and right ears. The transformation is conditioned on the lis-
tener’s head orientation given by a rotation vector R; and the 3D
position and orientation of the source Ps = (x,y, z, Rs) expressed
in listener’s head centered coordinated system — see Figure 1a. We
assume that K number of source/listener’s 3D positions and orien-
tations are available for the duration of @ (¢),ie1 K T. The
binaural signals for the left- and right ears are given as:

(9leﬂ(t); yright(t)) = F(x(t); 1 (D)

where f is a function parameterized by a neural network and w =
(RF, P*, RF)E_, are network conditioning inputs, and are referred
to as the direction code. Note that, traditional HRTF representation
ignores the orientation of the source since the sound source is as-
sumed to be an ideal source (i.e. omni-directional or point source).
In this work, we take into account the orientation of the source since
the function f(.), that we are trying to model, is learnt in a super-
vised manner using data collected from real audio sources (e.g., a
human speaker, loudspeaker).

3. PROPOSED MODEL

The block diagram of the proposed neural network model is shown
in Figure 2. The architecture is inspired by traditionally binaural
synthesis with HRTF filtering; that is, direction dependent filters for
the left- and right ears are applied as multiplicative masks onto the
input mono signal in frequency domain to produce the binaural sig-
nals. Our model architecture consists of three processing modules
as shown in Figure 2a: an encoder mapping the input signal into a
learned frequency space, a left-right masking temporal convolutional
network (TCN), and a decoder mapping the transformed signal back
into the wave domain. We describe the details of each module in this
section.
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Fig. 2: An overview of the proposed network architecture.

Encoder. The encoder module in Figure 2a transforms short seg-
ments of the input mono waveform into their corresponding repre-
sentations in an intermediate feature space suitable for binaural syn-
thesis. It also generates a residual connection which facilitates the
reconstruction of binaural signals by the decoder. The encoder is im-
plemented as a one layer 1-D convolutional neural network followed
by a PReLU as a non-linear activation function. We initialized the
kernel weights of the convolutional layer with handcrafted represen-
tation derived from the bases of the discrete Fourier transform. The
weights are further optimized with an end-to-end training paradigm.
The particular initialization scheme we used allows easy signal anal-
ysis and re-synthesis, and helps the model to preserve network ca-
pacity. We found those learned frequency embeddings to yield better
results than a fixed discrete Fourier transform in initial experiments.
The encoder can also be considered as trainable Short-Time Fourier
Transform (STFT) layer [22].

Left-Right Masking TCN. The left-right masking module, shown
in the middle of Figure 2a, consists of a temporal convolutional net-
work (TCN) block [23]. It takes the encoder output H and the direc-
tion code w as inputs and generate multiplicative masks M for the
left and right channels:

(M M™") = TCN(H, w). )

As shown in Figure 2b, the TCN module begins with a linear 1x1
convolutional layer that serves as a bottleneck. This layer deter-
mines the number of channels in the subsequent blocks. Figure 2¢
shows the design of residual blocks. The residual block is com-
posed of a 1x1 convolutional layer for channel mixing, followed by
a hyper-convolutional layer with increasing dilation factors, shown
as HyperDilatedCony in Figure 2c. The dilation factors increase ex-
ponentially to ensure a sufficiently large temporal context window to
model the long-range dependencies. The skip-connection and resid-
ual path designs follows [24,25]. The residual path of a block serves
as the input to the next block, and the skip-connection paths for all
blocks are summed up and used as output masks.

Furthermore, a common way to condition a neural network is
to add or concatenate some representations before feeding them into
its input layers. However, we observed in early experiments that nu-
anced source/listener position dependent signals are not well mod-
eled by such standard techniques. To adapt the output masks based
on the geometric relation between source and listener, we use a
hyper-convolution layer similar to what is proposed in [26]. We
condition the weights of the network on the source/listener positions
and orientations. These direction-dependent weights and biases are
obtained from the adaptor network that takes the direction code w
as an input and outputs the weights and bias which are then used
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