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Abstract—Category-specific 3D object shape models have greatly boosted the recent advances in object detection, recognition and

segmentation. However, even the most advanced approach for learning 3D object shapes still requires heavy manual annotations on

large-scale 2D images. Such annotations include object categories, object keypoints, and figure-ground segmentation for the instances

in each image. In particular, annotating figure-ground segmentation is unbearably labor-intensive and time-consuming. To address

this problem, this paper devotes to learn category-specific 3D shape models under weak supervision, where only object categories

and keypoints are required to be manually annotated on the training 2D images. By exploring the underlying relationship between two

tasks: object segmentation and category-specific 3D shape reconstruction, we propose a novel weakly-supervised learning framework

to jointly address these two tasks and combine them to boost the final performance of the learned 3D shape models. Moreover, learning

without using figure-ground segmentation leads to ambiguous solutions. To this end, we develop the confidence weighting schemes

in the viewpoint estimation and 3D shape learning procedure. These schemes effectively reduce the confusion caused by the noisy

data and thus increase the chances for recovering more reliable 3D object shapes. Comprehensive experiments on the challenging

PASCAL VOC benchmark show that our framework achieves comparable performance with the state-of-the-art methods that use

expensive manual segmentation-level annotations. In addition, our experiments also demonstrate that our 3D shape models

improve object segmentation performance.

Index Terms—3D shape reconstruction, common object segmentation, viewpoint estimation

Ç

1 INTRODUCTION

RECENT works in computer vision community have
achieved great success in object detection [1], [2], [3], [4],

[5], event analysis, and object segmentation [6], [7], [8]. it is a
challenging task to construct a rich internal representation of
objects, such as the depth information and 3D pose. To
address this problem, a two-step approach is widely adopted
by the existing approaches. First, object-specific 3D shape
models are obtained either by manual annotation or learning
from the training data; Then, the obtained 3D shape models
are used to align the objects in the test image and estimate
their 3D depth and pose. In this paper, we mainly focus on
the first step, i.e., how to learn the 3D shape models from the
2D image.

The conventional approaches for acquiring 3D shape
models follow a time-consuming and expensive process.
They usually require manual design of the 3D shape models
by using special 3D scan equipments with controlled imag-
ing environments. To overcome such limitation, an alterna-
tive approach, which is similarly used in some recent works
[9], [10], [11], is to build 3D object shape models by only
using 2D images from the publicly available benchmark
datasets, e.g., PASCAL VOC and ImageNet. Although these
approaches are more convenient and less expensive than the
conventional approaches, they still require labor-intensive
and time-consuming manual annotation of 2D images,
which includes annotation of object class labels, keypoints,
and figure-ground segmentation masks.

Along this line of research, this paper makes a further
effort to learn 3D shape models by only using weakly-labeled
2D images, and this can be also formulated as a weakly
supervised 3D object reconstruction process, in which the 3D
shape models are learnt from the 3D object reconstruction
process of the weakly labelled individual training images.
Here, weakly-labeled 2D images are the images only anno-
tated with the corresponding object categories and a small
number of keypoints of each object instance. Whereas the
most time-consuming 2D manual annotation process for
obtaining the pixel-level figure-ground segmentation mask
of each object instance is not required any more. Obviously,
learning category-specific 3D shape models in such way
would be highly valuable as it bridges the 3D visual world
with limited data and the 2D visual world with plenty of
data. However, we need to address many challenges for
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developing such a learning framework: (1) The figure-
ground segmentation masks of the object instances play a
key role in matching 3D object shapes with pixels in 2D
images, but it is difficult for them to be inferred in complex
scenarios. (2) Without strong supervision information from
the manually labelled pixel-level masks, weakly-supervised
learning methods face serious ambiguity issues when seg-
menting the 2D object masks and reconstructing the 3D
object shapes. (3) Estimating 2D masks from weakly-labeled
images is a necessary task that may be affected by significant
image noise, and the errors in the estimated 2D masks will be
significantly amplified in the final 3D shape models.

To address the first challenge, we introduce a hidden task
by explicitly inferring the figure-ground segmentation mask
of each training instance. Note this is different from the
conventional weakly supervised learning frameworks that
model 2D information as hidden variables of the objective
function for 3D shape models. We take this approach because
the structural space of the figure-ground segmentation masks
is so large and it is hard to find the optimal solutions to hid-
den variables. In our approach, explicitly inferring segmenta-
tion masks produces a more reliable solution for learning
the 3D shape models. Based on this idea, we introduce a
Common Object Segmentation (COS) task into the learning
framework. The goal of COS is to segment the common
objects that appear in the images from the same object
category. The segmentation masks obtained by COS can
readily provide helpful supervision to guide the learning
process of 3D object shapes.

Although COS can provide reliable segmentation masks,
we still cannot build satisfactory 3D shape models by

directly using the estimated segmentation masks, due to
the aforementioned second challenge. Under the weakly-
supervised scenario, neither the COS task nor the 3D object
reconstruction task can be well-solved individually. Fortu-
nately, we observe these two tasks can help each other to boost
the performance of both tasks. On one hand, the figure-ground
object masks generated by COS can help provide informative
bottom-up shape cues for 3D object reconstruction. On the
other hand, the 3D shape models from 3D object reconstruc-
tion can provide helpful yet under-explored top-down priors
for COS. Based on this observation, we propose to solve COS
and 3D object reconstruction alternatingly. When solving the
COS task, we use the 3D shape models learnt from 3D object
reconstruction to construct a prior-knowledge based term in
the objective function of COS. When solving the 3D object
reconstruction task, we apply the object segmentation masks
obtained from the COS task to constrain the learning process
of 3D shape models.

To address the third challenge, we propose a novel learn-
ing framework to learn the weakly superivsed category-
specific 3D shape models with a confidence weighting
scheme. The key observation is that, instances with simpler
shapes and cleaner background can improve the learning
process as it is easier to segment and reconstruct them (see
the images in the left subfigure of Fig. 1). Meanwhile, instan-
ces with complex shapes and in the cluttered background
usually confuse the learner as these instances will inevitably
introduce noise into the learning process (see the images in
the right subfigure of Fig. 1). Based on the above discussion,
we propose a novel 3D shape reconstruction algorithm that
computes the confidence of training samples at each learning
iteration based on the currently learnt 3D shape models and
the previously estimated segmentation masks. Then, the 3D
shape models always learn more from instances with higher
confidence. This confidence weighting scheme effectively
reduces the confusion caused by noisy data and significantly
boosts the final performance.

Fig. 2 illustrates the flow chart of our approach. We first
collect the category-specific instances according to the object
categories. Then, given the annotated keypoints, we use an
improved Structure from Motion (SfM) method to estimate
the camera viewpoint parameters for each of the training
instances (See Fig. 2a). Specifically, we propose a new learn-
ing strategy to guide the viewpoint estimation process. We
empirically demonstrate that this strategy can avoid bad

Fig. 1. Examples from the PASCAL VOC dataset. It is easier to learn 3D
models by using the instances with less complex shapes and in relatively
clean backgrounds. The learning process may become difficult when the
instances are with complex shapes and in cluttered image backgrounds.

Fig. 2. The learning process (i.e., subfigures a-d) of the newly proposed 3D shape model learning framework. The subfigures (a) and (b) show the
viewpoint estimation process (in Section 3.1) and the sub-group generation process (in Section 3.2). The subfigures (c) and (d) show the proposed
iterative learning process for common object segmentation (in Section 3.4) and the 3D object reconstruction (in Section 3.3).
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local minimum and achieve better viewpoint estimation
results. Next, the category-specific instance collection is
decomposed into subgroups (See Fig. 2b) and the initial
coarse segmentation masks are obtained by using an exist-
ing object co-segmentation method [12]. Afterwards, we
implement the joint optimization framework to infer the
segmentation masks of each object instance and the 3D
shape models of the specific object category. In this optimi-
zation framework, we first design a confidence weighting-
based 3D object reconstruction algorithm to learn 3D
shape models based on the estimated view points and the
estimated 2D segmentation masks. Then, the learnt 3D
shape models are used to provide the top-down prior for
Common Object Segmentation. We alternatingly conduct
the 3D object reconstruction process (See Fig. 2d) and the
COS optimization process (See Fig. 2c) until the whole
learning procedure converges. Finally, the segmentation
masks and the category-specific 3D shape models are
jointly learnt by the proposed weakly supervised learning
framework.

In summary, this work mainly has fourfold contribution:

– We made one of the earliest effort to learn category-
specific 3D object models only from weakly anno-
tated 2D images. It can largely save the time and costs
for manually labeling the figure-ground segmenta-
tion masks that are required by the existing methods,
e.g., [9], [13].

– By revealing the underlying relationship between
the common object segmentation task and the 3D
object reconstruction task, we propose a novel frame-
work to jointly solve the problems in these tasks and
improve both of them.

– To cope with the noisy data during the joint learning
process, we propose a robust viewpoint estimation
method and and a confidence weighting-based 3D
object reconstruction algorithm.

– Comprehensive experiments are implemented on
the PASCAL VOC benchmark and the effectiveness
of the proposed framework is demonstrated based
on both the recovered category-specific 3D shape
models and the estimated 2D segmentation masks.

The work in this paper is a substantial extension of our
preliminary conference work in [14]. Compared with [14],
the major differences in this paper are summarized below:
1) We improve the conventional Structure from Motion
method (i.e., EM-PPCA [15]), by employing a new learning
strategy for viewpoint estimation, which can effectively
avoid bad local minimum and achieve better viewpoint
estimation results. 2) We propose a novel 3D object recon-
struction algorithm for learning the category-specific object
shape models. Specifically, we additionally introduce a con-
fidence weighting scheme into the learning process rather
than equally treating all the training samples. In this way,
the newly proposed 3D object reconstruction algorithm can
address the learning ambiguity issue during its learning
process and thus obtain more reliable 3D shape models. 3)
More experiments are conducted with detailed analysis,
including comparison for the 3D object reconstruction task,
the common object segmentation task and the viewpoint
estimation task.

2 RELATED WORKS

Learning 3D shape models is a long-standing and challeng-
ing research area in computer vision. The early research is
under fixed-model-based paradigm, which focuses on
exploiting 3D prior information by CAD models [16], [17] or
special equipment (3D scanners) [18]. These approaches can-
not work well when we are provided with in-the-wild train-
ing data containing unknown object categories and cluttered
image background. For example, Choy et al. [19] employed
the ground truth shape (the 3D CAD model) as 3D shape
prior to provide supervision for training the end-to-end net-
work. Rezende et al. [20] proposed to learn a generative
model of 3D structures from volumetric data or multi-view
images of individual object. Different from these methods,
our goal is to reconstruct 3D shape prior for a category-level
object from the weakly labeled dataset.

For category-level modeling, the works in [21], [22], [23],
[24] learned morphable models of an object category by
using 3D shapes of multiple object instances. These works
are limited to simple objects as they assume both shapes
and appearances of objects from the same category can be
modeled by low-dimensional manifold/subspaces. Among
these works, Zia et al. [22] proposed 3D geometric object
category representations for object recognition from a single
image. This approach recovers geometrically far more accu-
rate object hypotheses rather than just bounding boxes. Spe-
cifically, the object hypotheses obtained in [22] include
continuous estimation of object pose and 3D wireframes with
relative 3D positions of object parts. By treating the shape of
an object instance as a warped version of the mean shape of
the category, Bao et al. [23] learned 3D prior (mean shape and
a set of anchor points) from 3D scans and images of objects
from various view points. Similarly, Dame et al. [24] com-
bined image and 3D scans to improve the robustness of the
classical 3D object reconstruction approaches. In contrast to
the 3D data-based approaches, the previous data-driven
methods [25], [26] explored traditional NRSfM [27] on the
simple object categories, which reconstructs category-level
3D models directly from unordered images.

The recent works in [10], [11] learned category-level 3D
shape models for complex object categories via the data-
driven fashion which are closely related to our approach.
Given the labeled training 2D data, the works in [10] esti-
mated the viewpoints for each training instance based on
NRSfM, and then recovered the 3D models for each category
by deforming the surface mesh iteratively until convergence.
However, these works heavily rely on the manually anno-
tated 2D object masks. Compared with these approaches, our
work makes the earliest step towards learning category-level
3D models from weakly labeled data. Our approach itera-
tively solves the common object segmentation task and cate-
gory-specific 3D shape reconstruction task, and improves the
performance of both tasks.

3 THE PROPOSED APPROACH

Our approach learns the category-specific 3D shape model
from the instances labelled with a specific object category,
which consists of four main steps: (1) Estimating the view
point of each training instance; (2) Clustering the instances
according to their orientations and appearances and
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initializing the segmentation mask for each training instance;
(3) Learning category-specific 3D shape models by using the
segmentation masks; (4) Segmenting objects by using cate-
gory-specific 3D shape models. Step (3) and step (4) are per-
formed alternatingly until convergence. By performing the
aforementioned steps within our proposed learning frame-
work, the 3D mean shape and the segmentation masks of
each object of interest can be gradually improved when the
number of iterations increases (see Fig. 3).

3.1 Viewpoint Estimation Based on Robust NRSfM

The object viewpoint is represented by camera parameters
that project 3D shapes of an object to their 2D mask in images
(See Fig. 2a). Given the training images and manually anno-
tated 2D keypoints, the first step is to estimate the 3D coordi-
nates of the keypoints. We propose a robust Non-Rigid
Structure From Motion (Robust NRSfM) algorithm to recon-
struct 3D coordinates of the keypoints and compute the cam-
era parameters. As discussed in [9], the NRSfM method is a
commonly used approach for camera viewpoint estimation
from sparse correspondence as intra-class variation may
degrade the performance significantly if it is not modeled
explicitly.

The framework of NRSfM is performed on all object
instances from the same category [15], [27]. We first crop the
pixels of object instances from the images based on the rec-
tangles enclosing the annotated 2D keypoints. Given K p key-
points Pn 2 R2�K p for the nth training instance n 2 f1; 2; :::;
N g. The NRSfM [9] algorithm maximizes the likelihood of
the following formulation to approximate the 3D keypoint
locations Wn 2 R3�K p and the camera parameters ðcn; Rn; tnÞ:

Pn ¼ cnRnWn þ tn1T þ Hn;

Wn ¼ W þ
X

d
Udzn;d;

zn;d � N ð0; 1Þ; Hn;i � N ð0; s2IÞ;
d 2 f1; :::; Dg; i 2 f1; :::; K pg;

s:t: RnRT
n ¼ I ;

(1)

where I denotes the identity matrix. Hn ¼ ½Hn;1; Hn;2; :::;
Hn;K p� 2 R2�K p denotes the white noise matrix. The camera
parameters include the rotation matrix Rn 2 R2�3 (ortho-
graphic projection), the scale cn and the 2D translation tn 2
R2�1. 1 2 RK p�1. The 3D keypoint Wn is parameterized
based on a Gaussian distribution with a mean shape W, D
deformation bases U ¼ fU1; U2; :::;UD g and the deforma-
tion parameters zn ¼ fzn;1; zn;2; :::; zn;D g. We adopt the EM-
PPCA algorithm [15] and the self-paced learning strategy
[28], [29] to maximize the likelihood of Eq. 1. The self-paced
learning theory [17] mainly considers the sample easiness to
gradually learn from easy training samples to the complex
ones, this learning strategy can avoid a bad local minimum
when handling non-convex objectives.

We follow [15] to model the objective function as the
Gaussian distribution of Pn by marginalizing the hidden var-
iable zn , and then utilize the EM algorithm to optimize the
parameters cn , Rn , tn , W, U and s2. Specifically, in the E-step,
we estimate the posterior probability QðznÞ according to the
parameters from the last M-step. In the M-step, we estimate
the parameters C ¼ cn; Rn; tn; W; U

� �
and s2 according to

QðznÞ. As such a latent variable model might strongly
depend on initialization and would be easily trapped in to a
bad local minimum, we introduce the self-paced regularizer
[28] into the objective function of the M-step. Thus, we arrive
at our objective function of the M-step as follows:1

min
C;s2;"2f0;1gN

X
n
"nEzn�QðznÞ log

1
r ðpn; znjC; s2Þ

� �� �

� h
X

n
"n;

(2)

The selecting weights "1; :::; "Nf g determines which samples
will be selected during the learning process. Following the
self-paced learning theory [28], if Ezn�QðznÞlog ½ð 1

r ðPn;zn jC;s2ÞÞ� �
h, then we have "n ¼ 1, which means the nth training

instance is suitable to be employed for the current training

stage. On the other hand, if Ezn�QðznÞ½logð 1
r ðPn;zn jC;s2ÞÞ� > h,

then we have "n ¼ 0. The parameter h represents the learn-

ing-paced parameter, which controls the learning method

to select the appropriate samples to be present at the recent
learning stage. As the training process proceeds, the param-

eter h is increased to incorporate the “easy-to-hard” idea

into the training process, namely, the large value of h means

that the easy samples are preferred to be selected.

3.2 Instance Segmentation Mask Initialization and
Instance Cluster Generation

After viewpoint estimation, we adopt a co-segmentation
approach [12] to initialize the segmentation masks of the
instances. Due to large variations in viewpoints, shapes, tex-
tures, and sizes (see Fig. 1), it is difficult to implement such
segmentation process on all instances from the same cate-
gory. To this end, we build a refined two-stage clustering
strategy based on the viewpoint and appearance (see Fig. 4).
Our approach gradually decomposes the entire category-
specific instance collection into multiple clusters with less

Fig. 3. Two examples (from the car and aeroplane categories) to show
the evolvement of the segmentation masks and the 3D mean shapes
when the number of iterations increases. Both the segmentation masks
and 3D mean shapes are very coarse at the beginning, while we observe
fine details after using our iterative learning approach.

1. In Eq. (2), r ðpn; znÞ ¼ r ðpn jznÞr ðznÞ, where r ðpn jznÞ is Gaussian
(as given by Eq. (1)), and r ðznÞ ¼ N ðzn j0; I Þ.
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intra-group variations, which allows us to obtain robust pri-
ors from such subgroups and then use them to build the
global shape information. Considering viewpoint variations,
we use the camera parameters fcn; Rn; tng from Section 3.1 to
describe each object instance and perform the K-means clus-
tering method to separate the entire category-specific instance

collection into d viewpoint clusters, fGð1Þ; Gð2Þ; :::;GðdÞg. Each
cluster contains the instances from similar viewpoints. Con-
sidering shapes, textures, and sizes variations, we use the
seed-based clustering approach [12] to obtain subgroups
from each viewpoint cluster. This is due to the superior
capability of the seed-based clustering approach in grouping
visually coherent instances together. Specifically, we first
use each instance within a certain viewpoint cluster as a
seed and then build groups by detecting similar instances
from the remaining instances. For implementation, we train
the exemplar detectors eLDA [30] based on the HOG features
of each instance, and then use each detector to group similar
instances by selecting the top K e detections with the highest
detection scores.

For each training subgroup, the co-segmentation approach
[12] can then be used to generate the initial segmentation
masks of instances. Basically, the segmentation problem is
formulated as a classical graphcut problem [31] that labels
every pixel in the input images as the foreground or back-
ground. This graph cut problem is then solved by mini-
mizing the energy function consisting of three terms: an
image-level unary potential term, a cluster-level unary
potential term, and a pairwise potential term. Specifically,
the image-level unary potential term discovers the poten-
tial object regions by the appearance model specific to an
image, the cluster-level unary potential term discovers the
potential object regions by the appearance model shared
between all images in the cluster, the pairwise potential
term discovers the object boundaries between the object
regions and image background.

3.3 3D Shape Reconstruction

This subsection presents the approach for learning the
weakly supervised 3D object shape model based on a confi-
dence weighting scheme (See Fig. 5).

3.3.1 Formulation

We use the following notations to present our 3D object
reconstruction approach. Denote O as the 2D mask (i.e., sil-
houette) of the object in each image and v ¼ ½vð1Þ

1 ; :::; vð1Þ
n1

;
vð2Þ

1 ; :::; vð2Þ
n2

; :::; vðdÞ
nd

� as the confidence weights for all training
subgroups, where nc, c ¼ f1; 2; � � � ; dg indicates the number
of subgroups in GðcÞ. Notice that in the previous works, e.g.,
[9], [10], the 2D object masks O are obtained by manual
annotation. However, in this work, the manually annotated

2D object masks O are not provided. Thus we need to infer
the 2D object masks by introducing the common object seg-
mentation process into the learning framework. S ¼ Sh; G

� �

is the 3D object shape model, where Sh corresponds to the
category-level 3D mean shape and G¼ fg1; g2; :::; gv g
denotes a set of deformation bases, v is the number of the
deformation bases. The 3D mean shape and the deformation
bases are shared for all the images that contain instances
belonging to the same object category.

For each training subgroup, we propose a soft-diverse
confidence weighting variable that dynamically decides
whether certain subgroup would be selected to participate
in the learning process when constructing the 3D shape
models. Specifically, the 3D shape reconstruction process
is an iterative optimization process, which alternatively
optimizes the 3D shape model based on the confident
training subgroups selected from the previous iteration
and updates the confidence weights of each training sub-
group to select confident training subgroups for the next
iteration. This learning procedure can well address the
learning ambiguity issue due to noisy training instances,
i.e., the instances with less-confident 2D segmentation
masks. We formulate this new confidence weighting-based
3D shape reconstruction scheme as the following optimi-
zation problem:

min EGL þ EIA þ f ðv; �; # Þ;
s:t: Shn ¼ Sh þ

X
t
an;t gt ;

(3)

where an;t ; t ¼ f1; :::; v g denotes the deformation weight of
the tth deformation base for the nth training instance. EGL

is a global energy term to regularize the learnt mean 3D
shape and deformable bases, while EIA is an instance-aware
energy term to regularize the 3D shapes inferred on each
training instance. f ðv; �; # Þ is the confidence weighting reg-
ularizer, which produces the soft confidence weights v for
all training subgroups.

The Global Energy Term. Similar with [9], the global energy
term EGL contains a local consistency term Elc and a defor-
mation penalization term Epd:

EGL ¼ Elc þ Epd; (4)

Fig. 4. Illustration of the two-stage clustering approach.

Fig. 5. Examples to illustrate the newly proposed confidence weighting-
based 3D shape reconstruction scheme.
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where

ElcðSh; GÞ ¼
X

x

X
y2N ðxÞððk Shx � Shy k �%Þ2

þ
X

t
k gt;x � gt;y k2Þ;

Epdða; GÞ ¼
X

n

X
t

k an;t gt k2
F :

(5)

In Eq. (5), the variable gt;x is the xth point on the tth basis, and
Shx is the three-dimensional coordinate of the xth point2 on
Sh. %indicates the mean squared displacement between the
neighborhoods N ð�Þ of each point, which encourages all sur-
faces to have similar sizes. The neighborhood N ð�Þ is defined
based on the spatial distance. Different from the local consis-
tency term Elc which restricts arbitrary deformations, Epd

penalizes the L 2 norm of the deformation parameter a in
order to prevent unreasonable large deformations.

The Instance-Aware Energy Term. The instance-aware
energy term EIA contains three terms, which are the appear-
ance consistency term Esc, the 3D shape normal smoothness
term Ens, and the common object segmentation term ECOS,
respectively:

EIA ¼
X

c

X
i

vðcÞ
i

1
K e

X K e

m¼1
Ec;i;m

sc þ Ec;i;m
ns þ Ec;i;m

COS

� �
;

(6)

where c, i , and m indicate the indexes of the cluster, subgroup,
and instance, respectively. Following [9], for each instance,
we have:

EscðSh; O; pÞ ¼
X

Vðq;OÞ > 0

~ 1ðq;OÞ þ
X

p2O

~ 2ðp;pðShÞÞ;

EnsðShÞ ¼
X

x

X
y2N ðxÞð1 � N� !

x � N� !
yÞ;

(7)

where q denotes the point on the 2D projection of the 3D
shape pðShÞ, V ðq;OÞ refers to the Chamfer distance
between the point q and the 2D object mask O, ~ 1ðq;OÞ
indicates the squared distance of pixel q to its nearest neigh-
bor in the set O, p 2 O denotes the point on the 2D object
mask O, ~ 2ðp;pðShÞÞ indicates the squared average dis-
tance of pixel p to its two nearest neighbors in the 2D projec-
tion pðShÞ of its shape Sh. Here pðShÞ is defined as:

pðShÞ ¼ c R Sh þ t 1T ; (8)

where fc;R ; t g are the camera viewpoint parameters
obtained from Section 3.1.

According to [9], the first term in Esc penalizes the 3D
shape points which are outside the corresponding 2D object
mask after projection, while the second term in Esc encour-
ages the points on the 2D object mask to pull nearby pro-
jected points towards them. Different from Esc, the normal
smoothness term Ens places a cost on the variation of normal
directions in a local shape neighborhood to ensure the shape
change tends to be locally smooth (see Eq. (7)). In Eq. (7),

N� !
x denotes the normal for the xth point in Sh. It is com-

puted by fitting planes to the local point neighborhoods. The

common object segmentation term ECOS is defined in
Eq. (12), which is treated as a constant in Eq. (6).

The Confidence Weighting Regularizer. The confidence
weighting regularizer term f ðv; �; # Þ produces the soft
confidence weights v for all training subgroups, which is
defined as:

f ðv; �; # Þ ¼ ��
P

c

P
i vðcÞ

i � #
P

c

														P
i vðcÞ

i

q
; (9)

where the first term (referred to as the sample easiness term)
tends to select samples (or training subgroups) with smaller
loss values [2] while the second term (referred to as the sam-
ple diversity term) favors selecting training subgroups from
different viewpoint clusters [2]. � and # are two parameters
imposed on these two terms. With this confidence weighting
regularizer, our approach tends to assign high confidence
weights to the training subgroups with smaller learning loss
and from diverse viewpoint clusters, which is critical for
learning good 3D object shape models under the weak super-
vision. Without the variable v and this regularizer term,
Eq. (3) degenerates to the objective function in [9], which
learns the 3D object models from fully annotated 2D images.

3.3.2 Optimization

Given the training subgroups fGðcÞ
i ; i ¼ 1; :::; nc; c ¼ 1; :::;dg,

the 3D shape models S ¼ Sh; G
� �

are inferred by optimizing
the energy function in Eq. (3). Similar with [2], [32], [33], the
solution of Eq. (3) can be approximately obtained by alter-
natingly optimizing the confidence weights v and the shape

models Sh; G
� �

.
Optimize Sh; G

� �
with Fixed v. The goal of this step is to

update the category-specific 3D shape model. To relax the
optimization process, we treat ECOS as a constant value that
has been obtained from the previous segmentation phase.
Then, the energy function in Eq. (3) degenerates to the fol-
lowing form:

min
Sh;G;a

Elc þ Epd þ
X

c

X
i

X
m

Ec;i;m
sc þ Ec;i;m

ns

� �
;

s:t: Shn ¼ Sh þ
X

t
an;t gt :

(10)

To optimize this highly non-convex and non-smooth object
function, we follow [9] to infer the optimal mean shape and
the deformation basis by using block coordinate descent on
Sh, Gand a, in which sub-gradient is computed over the train-
ing samples. For initialization, we use the mean shape with a
soft visual hull, which is computed by using the selected train-
ing subgroups. We initialize the deformation bases and defor-
mation weights randomly.

Optimize v with fixed Sh; G
� �

. This step updates the weights
imposed on all training subgroups to reflect their confidence
for learning of the 3D shape model in the next iteration. In this
case, the energy function Eq. (3) is reformulated as follows:

min
v

EIA þ f ðv; �; # Þ;
s:t: Shn ¼ Sh þ

X
t
an;t gt :

(11)

According to [2], Eq. (11) is convex as both the L1-norm
term (i.e., the first regularizer in Eq. (11)) and the anti-group
sparsity term (i.e., the second regularizer ) are convex. By

2. We denote x and y as the indexes for the points on each 3D shape,
while p and q as the indexes for the points on each 2D image.
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satisfying the KKT (Karush-Kuhn-Tucker) conditions of the
Lagrangian, the explicit global optimum of Eq. (11) can be effi-
ciently calculated. We provide the explicit solution of Eq. (11)
in Algorithm 1 of the Supplementary Material, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2019.2949562.

3.4 Common Object Segmentation Using 3D Shape
Projection Prior

We use the category-specific 3D shape models to provide
top-down priors for common object segmentation. Specifi-
cally, for each training subgroup containing K e instance
images, our goal is to obtain each object mask O by labeling
each pixel to be foreground (i.e., lp ¼ 1 ) or background (i.e.,
lp ¼ 0), where p denotes the pixel location in each image.
This labeling problem is solved by minimizing the follow-
ing energy function over the pixels and labels:

ECOS ¼ EI þ EW þ ETD; (12)

where the term EI [12] is the unary potential from an
appearance model that is specific to each instance:

EI p; Að Þ ¼ �logr lp; xp; A
� �

; (13)

where r lp; xp; A
� �

measures the likelihood of a pixel with its
RGB color feature xp taking the label lp according to its
appearance model A . Here A consists of two Gaussian mix-
ture models (GMMs) over the RGB color space as defined in
[12] i.e., one for the foreground (when lp ¼ 1) and another
for the background (when lp ¼ 0). The appearance model is
learned by using the pixels inside and outside the segmen-
tation mask, which is inferred from the previous iteration.

The term EW [12] is the pairwise potential defined as:

EW p; q; lp; lq
� � ¼ d lp 6¼ lq

� �
e�b xp�xqk k2

; (14)

where dð�Þ is the logistic function. Eq. (14) penalizes two
pixels (p and q) when they are assigned with different labels
but having an intervening contour (IC) between them [34].

The term ETD is the top-down prior term that enforces
the obtained segmentation masks within each subgroup to
be consistent. This is modeled as the top-down shape priors
over pixels:

ETD p; SM; PMð Þ ¼
� logr ðlpjSM; pÞ � logr ðlpjPM; pÞ; (15)

where SM is the average segmentation mask of the instan-
ces in the subgroup. The term �logr ðlpjSM; pÞ is the prior
probability that each pixel belongs to the foreground or
background, given the pixel location and SM . Similarly, PM
is the average projection shape mask of the instances in the
subgroup, which is obtained by using the 3D shape model

S ¼ Sh; G; a
� �

from the previous iteration:

PM ¼ 1
K e

X
m

cmRmShm þ tm1T� �
;

Shm ¼ Sh þ
X

t
am;t gt ;

(16)

where the viewpoint parameters cm; Rm; tmf g are obtained

from Section 3.1, the 3D shape model Sh; G
� �

and the

corresponding deformation parameters fam;t g are obtained
from Section 3.3. The term �logr ðlpjPM; pÞ effectively intro-

duces the top-down prior provided by the category-specific

3D shape models for common object segmentation. After

the 3D object reconstruction process, we use the learned 3D

shape model to obtain the average projection shape mask

PM and treat it as a constant in Eq. (12). Then, the overall

energy in Eq. (12) can be conveniently minimized by using

the graph-cut algorithm [31].

4 EXPERIMENTAL EVALUATION

4.1 Tasks and Evaluation Metrics

We conduct individual experiments for three main compo-
nents: the category-specific 3D shape models, the common
object segmentation masks, and the viewpoint estimation.

To evaluate category-specific 3D shape models, we use
the following procedure. After the learning procedure with
the newly proposed algorithm, we follow the testing process
in [9] to use the learned 3D shape models, which contains a
3D mean shape and a set of deformation bases, to infer the
deformation parameters and fit the 2D silhouette of the
objects in each testing image. Then we evaluate the quality of
the reconstructed 3D object shapes, which are obtained by
combing our learnt 3D mean shape and deformation bases
with the deformation parameters inferred on each testing
image, based on two metrics, i.e., the Mesh Error [35] and the
Depth Error [9].3

For evaluating the generated segmentation masks, we
adopt the standard intersection-over-union (IOU) metric to
compare each segmentation mask and the corresponding
ground-truth mask on the training set.

For viewpoint estimation, we use geodesic distance to
compute the difference between our estimated viewpoints
and the 3D annotated viewpoints from the PASCAL3D+
dataset [36]. Then, we employ two complementary metrics to
evaluate the viewpoint estimation accuracy. The first one is
the median error, which refers to the median value of all the
geodesic distances between the predictions and the ground-
truth rotation matrices. The second one is the accuracy at u,
which denotes the proportion of instances whose predicted
viewpoints are within a fixed range (i.e., u degree) of the cor-
responding ground-truth viewpoints. We also follow [9] to
denote the threshold u¼ p

6.
More detailed descriptions of the above mentioned eval-

uation metrics can be referred to the Supplementary Mate-
rial, available online.

4.2 Dataset

We use 10 rigid object categories selected from the challenging
PASCAL VOC 2012 benchmark [37], which is widely used for
object detection, semantic segmentation and many another
computer vision tasks. However, the label from the PASCAL
VOC dataset does not include the annotation of object view-
points and 3D shapes. In order to evaluate the performance
of different methods used for 3D shape reconstruction and

3. As this work focuses on the learning process of the 3D object
shape models, following the testing process of the previous works in
the aforementioned way could help present a more clear comparison
evaluation.
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viewpoint estimation, we adopt the 3D CAD models and the
viewpoint annotation, which are provided in the PASCAL3D
+ dataset [36]. To the best of our knowledge, the PASCAL 3D
+ dataset is the most comprehensive dataset as it contains a
large number of images with 3D shape and viewpoint annota-
tion. In our experiments, we use the publicly available key-
points during the learning phase and adopt the ground-truth
segmentation masks for evaluation. During training, we only
use the images that contains one object.

4.3 Parameters Setting and Initialization

To implement the proposed robust NRSfM method, we set
the number of deformable base D ¼ 5 and other parameters
(i.e., cn , Rn , tn , Û and s2) are randomly-initialized as in [15].
For initialization in our proposed robust NRSfM, we need
to determine the initial parameter for each sample. To this
end, we first perform NRSfM for 10 iterations by using ran-
domly initialized parameters. Then select 80 percent of sam-
ples for initial training, which will be then increased by 10
percent after each iteration. Please refer to the Supplemen-
tary Material, available online for the performance variation
using different hyperparameters.

According to the experimental analysis shown in Fig. 6,
we set the number of viewpoint clusters d as 4 and the
number of top detections K e as 3. From Fig. 6, we observe
that the final performance cannot be always improved by
increasing the number of viewpoint-specific clusters d. Spe-
cifically, although the viewpoint consistency within each
cluster would increase when using more clusters, the
appearance consistency within each cluster might be hurt,
which will also influence the subsequent appearance-based
clustering process.

For 3D object reconstruction, we set the number of
deformable bases as v ¼ 5. The mask of each object and the
3D mean shape for each category are initialized by using the
common segmentation results in [12] and the visual hulls
method in [9] respectively. During the learning process, we
propose a five-level approach, which starts from a smaller
confidence parameter to infer a coarse category-level mean
3D shape model and then gradually increases the confidence
parameter to use more complex subgroups for enriching the
details of the 3D shape. The confidence parameters � and #
are jointly determined by the number of subgroups involved
in the training process and the value of the energy function
1

K e

P K e
m¼1 Ec;i;m

sc þ Ec;i;m
ns þ Ec;i;m

COS . During the learning process,
we select 50 percent subgroups in the first iteration and then
gradually increase the amount of selected subgroups by
10 percent per iteration. After each iteration, we first sort the
training subgroups according to the values of their energy
function 1

K e

P K e
m¼1 Ec;i;m

sc þ Ec;i;m
ns þ Ec;i;m

COS in ascending order
and choose the top ranked subgroups. Then, we set � as the
maximum loss value of the selected subgroups and # as
20 percent of standard deviation for the loss values of all
training subgroups. Please refer to the Supplementary Mate-
rial, available online for the performance variation using
different hyperparameters.

The appearance model Am and the RGB color feature xm;p

are obtained by the Chen et al. in work [12]. In the first itera-
tion, the foreground-background prior SM is provided by
the bounding box and the top-down prior term ETD , which
only considers the prior probability term �logr ðlpjSM; pÞ. In
the subsequent iterations, once we finish 3D object recon-
struction process, the masks in each training subgroup are
updated by using the planar projection of the learnt 3D shape.

4.4 Viewpoint Estimation

We evaluate the proposed viewpoint estimation method by
comprehensively comparing it with the state-for-the-art
structure-from-motion method EM-PPCA [15], PF-NRSfM
[39] and the Rigid-SFM method [41]. The quantitative com-
parison results on the benchmark datasets are shown in
Table 1, from which we observe that the proposed learning
strategy can improve the viewpoint estimation performance
in terms of the median error and the accuracy at P=6. In
Table 1, we additionally compare our method with a base-
line “EM-PPCA-CH“. The “EM-PPCA-CH“ baseline uses a
mask constraint (i.e., the convex hull based on keypoints) in

Fig. 6. Analysis of the performance (mesh error) variation when using
different parameters dand K e in the proposed learning framework.

TABLE 1
Comparison Between the Estimated Viewpoints From Our Approach and the Two Baseline Methods Vanilla EM-PPCA

and Rigid-SFM in Terms of Median Error (MedErr) and Accuracy at P=6 (Acc P=6)

Categories aero bike boat bus car chair mbike sofa train tv mean

MedErr

PF-NRSfM [39] 18.42 19.35 86.29 13.52 19.18 11.14 27.60 29.06 29.82 18.09 27.25
Rigid-SFM [41] 17.14 18.07 76.95 13.47 15.92 9.19 25.29 28.02 29.58 17.28 25.09
EM-PPCA [15] 16.25 16.07 67.83 12.82 10.85 8.99 23.37 21.10 22.70 15.41 21.54
EM-PPCA-CH 15.96 34.19 67.83 12.89 10.79 8.99 18.46 21.58 23.04 13.24 22.7
Ours 15.90 14.99 62.82 10.89 7.21 8.15 19.20 17.36 20.58 13.64 19.07

Acc P=6

PF-NRSfM [39] 0.54 0.76 0.02 0.80 0.76 0.85 0.57 0.53 0.50 0.74 0.61
Rigid-SFM [41] 0.55 0.79 0.03 0.80 0.79 0.89 0.60 0.56 0.52 0.77 0.63
EM-PPCA [15] 0.57 0.82 0.10 0.85 0.97 0.89 0.63 0.69 0.63 0.81 0.70
EM-PPCA-CH 0.58 0.38 0.12 0.86 0.97 0.89 0.76 0.76 0.63 0.86 0.68
Ours 0.58 0.83 0.12 0.88 0.98 0.92 0.75 0.76 0.67 0.82 0.73
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its objective function, while our method does not use this
constraint. Therefore, for the categories like “airplane“,
“boat“, “motorbike“ and “tv“, this baseline can achieve
slightly better performance than ours. However, for the
“bike“ category, the objects have complex shapes and struc-
ture. Thus, the convex hulls formed by keypoints can hardly
reflect the real structure of objects. In this case, this method
achieves much worse performance than the EM-PPCA base-
line as well as our approach.

To demonstrate the robustness of the proposed view point
estimation method for handling the missing data, we com-
pare our proposed robust NRSfM method with 4 state-of-
the-art methods, including three structure-from-motion
methods (i.e., MP [38], EM-PPCA [15] and PF-NRSfM [39] )
and a robust matrix approximation with missing data
method (i.e., L1-Wiberg [40]), and a standard NRSfM base-
line [9]. We perform this experiment on the simulated miss-
ing data (a 900 by 20 matrix), which is generated by the data
generation method in [15], in which the missing data rates
are 10, 20, 30 and 40 percent, respectively. Following the pre-
vious work [39], we use the normalized mean 3D errors to
evaluate the performance of each method. The quantitative
comparison results are shown in Fig. 7. Compared with the
state-of-the-art methods and the baseline, our robust NRSfM
method can achieve competitive performance and is also
robust to missing data. While the PF-NRSfM method [39]
also achieves good performance on the synthetic data, it can-
not achieve as good performance as our approach in more
challenging scenarios like the Pascal dataset (see Table 1s).

To further analyze the capacity of the proposed robust
NRSfM method for avoiding arriving at a bad local mini-
mum solution, we compare our approach with EM-
PPCA [15] by performing each method for 100 times with
random initialization. The experimental results are shown
in Fig. 8, where we observe that our method can achieve bet-
ter average performance than EM-PPCA. In addition, over
all these 100 experiments, EM-PPCA arrives at a bad local
minimum for 47 times, where a bad local minimum is
defined as the one that has larger error than 1 Mean 3D
Error [39]. In contrast, our method arrives at a bad local
minimum for 18 times only. The experiments demonstrate
the effectiveness of our robust RNSfM method for avoiding
arrives at a bad local minimum solution.

4.5 Results for 3D Shape Reconstruction

In this section, we first compare the 3D Shape Reconstruction
results of our approach with the baseline methods: (“Ours-
nSV-nSR-nCS”, “Ours-nSR-nCS” and “Ours-nCS” ). Specifi-
cally, “Ours-nSV-nSR-nCS” directly utilizes the initial

co-segmentation masks of all the training images to recon-
struct the category-specific 3D shape models without using
our proposed viewpoint estimation and cross task coopera-
tion methods. “Ours-nSR-nCS” reconstructs the 3D models
with the initial co-segmentation masks and without using
cross task cooperation for reconstruction. “Ours-nSR” jointly
implements category-specific 3D shape reconstruction and
common object segmentation but without using our newly
proposed confidence weighting scheme. Furthermore, we
also compare the performance by using different confidence
weighting regularizers. Specifically, we build the baseline by
replacing the l0:5;1 norm-based soft-diverse confidence
weighting regularizer in Eq. (9) with the l1 norm-based regu-
larizer used in [28], which only produces binary information
of the important weight v. We name this baseline as “Hard
SPL”. The quantitative evaluation results of these baseline
methods are reported in Table 2.

From Table 2, we have the following observations: 1) The
confidence weighting scheme under the self-paced learning
framework provides an effective way to improve the weakly
supervised learning process for 3D object shapes (see the
comparison between “Ours”, “Hard SPL” and “Ours-nSR”).
2) Our newly proposed viewpoint estimation method can
improve the reconstruction performance (see the comparison
between “Ours-nSV-nSR-nCS” and “Ours-nSR-nCS”). 3) The
joint category-specific 3D shape and common object segmen-
tation method can help 3D object reconstruction and improve
the learning performance (see the comparison between
“Ours-nSR-nCS” and “Ours-nSR”). 4) By additionally con-
sidering the softness and diversity criterion for the weighting
regularizer, The approach using the l0:5;1 norm-based self-
paced regularizer further outperforms the approach using
alternative conventional l1 norm-based regularizer (see the
comparison between “Hard SPL” and “Ours”). 5) The pro-
posed approach (“Ours”) achieves best overall performance
and the outperforms other baseline methods on all these cate-
gories in terms of the mesh error and depth error.

In addition, we compare the proposed approach with a
baseline method “KP-CH”. Instead of using the ground-truth
masks, the “KP-CH” method obtains the 3D shape model
from the convex hulls of keypoints by using the method in [9].
The reconstruction results are reported in Table 2, and some
examples are shown in Fig. 9. We observe that the baseline
method “KP-CH” cannot achieve acceptable performance

Fig. 7. Reconstruction performance comparison on missing data by using
the proposed method, one baseline method and four state-of-the-art meth-
ods MP [38], EM-PPCA [15], PF-NRSfM [39], and L1-Wiberg [40]. Notice
that the missing data rates are 10, 20, 30, and 40 percent, respectively.

Fig. 8. Statistic of the EM-PPCA method over 100 times experiments
and our proposed method with random initialization. The results with
larger than 1 Mean 3D Error are considered as bad local minimums.
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due to lack of complex details in convex hulls, which also
demonstrates the importance of our fine-segmented masks
for reconstructing fine 3D shapes.

We also compare the 3D shape models in our newly pro-
posed approaches with those from several state-of-the-art
methods, including Tulsiani et al. [9], Vicente et al. [13],
Twarog et al. [42], Barron et al. [43]. When compared with
our approach, all these state-of-the-art methods need to addi-
tionally use a large amount of manually labeled segmentation
masks. However, from the experimental results in Table 3, we
observe that our method achieves encouraging performance.
In the first seven categories in Table 3, our approach is com-
parable with these state-of-the-art methods, which utilize
stronger supervision (i.e., the ground-truth-masks). We also
note that our newly proposed method cannot perform well
on the categories with complex scenes (e.g., “train” and
“sofa”) due to lack of enough instances. We show some
experimental results in Fig. 10, which include the successful

and failure cases. As shown in Fig. 10, it is challenging for our
approach to recover objects which have highly complex
structure and contain inconsistent topology with the mean
shape as it is hard to segment these objects and reconstruct
their 3D shapes. It is the common challenge to handle such
case in the field of 3D shape reconstruction even for the state-
of-the-art methods with stronger supervision.

Moreover, we compare our method with the Warpnet
method [44], which is a recent point-matching based method
that requires category labels for weakly-supervised learning
of 3D shape model. For comparison, we implement the
Warpnet method for one category (i.e., “car“) in the PASCAL
VOC dataset and build the pose-graph and match the image
pairs from this category for 3D points reconstruction. Since
Warpnet [44] reconstructs the 3D shape (in the form of 3D
points) of the camera perspective for each object, we rotate
the ground-truth shape into the camera view by using the
ground truth viewpoints and evaluate the predicted shapes
in terms of mesh error. When compared with Warpnet [44],
our method achieves better performance on the car category,
i.e., 2.12 (Ours) versus 2.21 (Warpnet [44]) in terms of mesh
error. We also show the predicted 3D points in Fig. 11. For
our method, we show the vertices of the reconstructed 3D
mesh shapes. We observe our approach obtains better 3D
shapes. There are two possible reasons: 1) We learn a
parametric shape model for objects from each category. Such
model is able to capture the intra-category shape variations
[9]. 2) We update the 2D object masks during the learning
process whereas the work in [44] fixes the imprecise object
masks during their whole learning process.

We further analyze the efficacy of joint segmentation and
reconstruction by comparing the performance of the pro-
posed approach with a set of baseline methods, which include
“Auto-Seg” and “Ours-nUS”. The “Auto-Seg” baseline jointly
performs the joint co-segmentation and 3D shape reconstruc-
tion by using [6] and [13], while “Ours-nUS” performs the
naive co-segmentation method and the 3D shape reconstruc-
tion of our proposed framework without updating segmenta-
tion in each iteration. The quantitative comparison results are
shown in Fig. 12, from which we can observe that: 1) The
Auot-Seg baseline which directly uses the co-segmentation

TABLE 2
Comparison of the Learnt 3D Shape Models Between the Proposed Approach and These From the Weakly Supervised Baseline

Methods

Categories aero bike boat bus car chair mbike sofa train tv mean

MeshErr

Coarse-Seg 2.36 4.30 6.21 4.12 4.36 4.04 3.12 8.56 12.11 10.87 6.00
Ours-nSV-nSR-nCS 2.04 4.09 4.29 3.21 2.34 3.36 2.34 6.36 8.83 9.49 4.64
Ours-nSR-nCS 1.97 3.37 4.05 3.10 2.33 3.01 2.28 6.33 8.67 9.16 4.43
Ours-nSR 1.89 3.28 3.96 2.24 2.32 2.55 2.25 6.32 8.37 7.73 4.09
KP-CH 2.62 4.24 5.98 4.25 3.24 4.08 3.14 8.29 10.34 9.52 5.37
Hard SPL 1.74 2.37 3.64 2.23 2.31 2.46 2.22 6.01 8.30 3.89 3.52
Ours 1.73 2.29 3.56 2.14 2.12 2.28 2.08 5.72 7.78 3.74 3.32

DepthErr

Coarse-Seg 12.65 19.22 22.39 23.38 18.41 16.40 14.24 35.77 43.29 38.11 24.38
Ours-nSV-nSR-nCS 10.77 14.73 17.13 18.51 11.22 10.72 11.73 26.60 37.50 36.84 19.58
Ours-nSR-nCS 10.74 14.35 17.09 18.23 11.17 10.50 11.41 26.32 37.49 33.98 19.13
Ours-nSR 10.63 13.18 17.01 18.04 11.06 10.40 11.39 26.30 37.42 21.03 17.65
KP-CH 13.45 18.93 21.23 24.85 13.34 17.71 15.28 34.76 38.10 36.96 23.46
Hard SPL 10.43 10.34 16.64 18.01 10.98 10.35 10.99 26.02 37.39 14.52 16.57
Ours 10.42 10.23 15.59 16.55 10.59 10.12 10.77 25.65 35.51 13.67 15.91

Detailed description of the compared methods can be referred to as in Section 4.5.

Fig. 9. Visual comparisons of the proposed 3D shape reconstruction
method and the keypoints based 3D shape reconstruction method using
convex hulls. The subfigure (a) shows the comparison of the mean
shapes from our inferred segmentation masks and the mean shapes
obtained based on the convex hull of the key points. Notice that in the
“masks” columns of the subfigure (a) we only show four random exam-
ples of the segmentation masks from the corresponding category. The
subfigure (b) shows the comparison of the 3D shapes reconstructed
based on the convex hull of the key points and our final segmentation
masks for each peculiar test instance.
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masks to reconstruct 3D shapes cannot obtain satisfactory
results, while our proposed strategy that simultaneously per-
forms reconstruction and segmentation can effectively
improve the 3D shape reconstruction performance. 2) the 3D
object reconstruction results can be improved under our
weakly supervised learning setting by gradually updating the
segmentation masks along the learning iterations.

Finally, we qualitatively analyze the performance of 3D
shape reconstruction by using coarse segmentations
(“Coarse-Seg”). For “Coarse-Seg”, we first train the 3D shape
models by using the coarse segmentation results obtained
from [45] and then we follow the 3D shape reconstruction
method in [9] to use the learnt 3D shape models to fit the test-
ing images. The results of the baseline method “Coarse-Seg”

are reported in Table 3. When compared with this baseline,
our method achieves better performance. Some examples of
the predicted shapes by using the baseline method “Coarse-
Seg” are shown in Fig. 13. From Fig. 13, we observe that our
proposed method can recover satisfactory 3D shapes with
fine details and complete appearances, whereas the recov-
ered results are much worse by using the coarse segmenta-
tion method [45].

4.6 Results for Common Object Segmentation

First, we compare our proposed learning framework with
three baseline methods “Hard SPL”, “Ours-nSR-nCS” and
“Ours-nSR” in terms of the IOU score. The experimental
results are reported in the top part of Table 4, from which we

TABLE 3
Comparison Between the Learned 3D Shape Models Obtained From the Proposed Approach

and the State-of-the-Art (STA) Methods

Categories aero bike boat bus car chair mbike sofa train tv mean

MeshErr

Tulsiani et al. [9] 1.72 1.78 3.01 1.90 1.77 2.18 1.88 2.13 2.39 3.28 2.20
Vicente et al. [13] 1.87 1.87 2.51 2.36 1.41 2.42 1.82 2.31 3.10 3.39 2.31
Twarog et al. [42] 3.30 2.52 2.90 3.32 2.82 3.09 2.58 2.53 3.92 3.31 3.03
Ours 1.73 2.29 3.56 2.14 2.12 2.28 2.08 5.72 7.78 3.74 3.32

DepthErr

Tulsiani et al. [9] 9.51 9.27 17.20 12.71 9.94 7.78 9.61 13.70 31.58 8.78 13.01
Vicente et al. [13] 10.05 9.28 15.06 18.51 8.14 7.98 9.38 13.71 31.25 8.33 13.17
Barron et al. [43] 13.52 13.79 20.78 29.93 22.48 18.59 16.80 18.28 40.56 20.18 21.49
Ours 10.42 10.23 15.59 16.55 10.59 10.12 10.77 25.65 35.51 13.67 15.91

Notice that all the STAs require stronger supervision (i.e., the manually annotated segmentation masks of object instances) than the proposed approach.

Fig. 10. Examples of the mesh maps, the depth maps, the manually annotated keypoints on different masks and the 3D shapes projected on the
images by using our method. In subfigures (a)-(f), “Mask” shows the ground-truth mask together with the manually annotated keypoints, “Projection”
shows the projection obtained by projecting the 3D shapes onto the images according to the estimated viewpoints (see Section 3.1), “Mesh” and
“Depth” are the 3D shape mesh and the depth map according to its viewpoint, respectively. The subfigure (g) shows some failure cases, which are
also challenging for the STA methods with stronger supervision.

HAN ET AL.: WEAKLY-SUPERVISED LEARNING OF CATEGORY-SPECIFIC 3D OBJECT SHAPES 1433

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 13,2022 at 23:07:19 UTC from IEEE Xplore.  Restrictions apply. 



observe that: 1) it is beneficial to use the proposed viewpoint
estimation and the confidence weighting-based cross task
cooperation method for co-segmentation. 2) Basically, “Ours-
nSR” outperforms “Ours-nSR-nCS” by jointly inferring the
category-specific 3D shapes and common object segmenta-
tion masks, which is consistent with the expressiveness of the
learned 3D models. 3) By additionally considering the soft-
ness and diversity criterion when designing the regularizer,
the soft-diverse confidence weighting method “Ours” further
improves the co-segmentation performance.

We also compare the segmentation masks for the obtained
3D shape models to segment the common objects via Eq. (13)
with those obtained from three state-of-the-art object co-
segmentation methods [6], [12], [45]. For fair comparison, we
implement the state-of-the-art methods by using them to seg-
ment the instance images that are cropped according to the
keypoint location. As shown in the bottom part of Table 4,
the proposed approach achieves better performance than

all the baseline and state-of-the-art methods in terms of the
IOU score.

During the experiment, we observe that the segmentation
results might benefit from using the foreground and back-
ground priors from the annotated keypoints. Considering
that such annotated keypoints are actually used in our
method, we further compare our method with the state-of-
the-art co-segmentation methods by employing the convex
hulls of keypoints at their initialization stages for more fair
comparison, which forms the baseline methods “Chen-KP”,
“Joulin-KP” and “Quan-KP”. We also report the IOU scores
of the foreground-background-prior “BB” baseline, which
uses the prediction of all the pixels in the GT bounding box
for segmentation. This can be considered as the lower-bound
of the segmentation results. Besides, we also report the IOU
scores of the “NS” baseline, which employs the supervised
segmentation method [46] to generate the segmentation
masks. Thus, the ‘NS” baseline can be considered as the
upper-bound of the segmentation results to some extent. The
experimental results are reported in Fig. 14, from which we
observe that our approach can achieve better average perfor-
mance when compared with STAs which takes advantage of
keypoint annotation. It is worth mentioning that the perfor-
mance improvement is not due to the keypoints but the 3D
shape prior.

4.7 Analysis of Convergence and Time
Consumption

First, we implement additional experiments to analyze the
convergence of our approach. Specifically, we evaluate our
method at each training stage. The performance is evaluated
based on the value of the 3D object reconstruction objective
function on the training data as well as the Mesh error and
Depth error on the test data. The experimental results are
shown in Fig. 15. From the left subfigure in Fig. 15, i.e., the
Objective Energy Value versus Training iteration figure,

Fig. 12. Comparison of our proposed 3D shape reconstruction method
and the automatic segmentation based 3D shape reconstruction method.

Fig. 13. Visual comparison of the 3D shapes obtained by our method
(denoted as “Ours”) and the coarse segmentation method [45] (denoted
as “Coarse-Seg”).

TABLE 4
Comparison Between the Segmentation Masks From Our Approach and Other Baselines and STAs in Terms of IOU

Categories aero bike boat bus car chair mbike sofa train tv mean

Baselines

Ours-nSR-nCS 0.755 0.590 0.672 0.822 0.791 0.685 0.725 0.862 0.643 0.671 0.722
Ours-nSR 0.769 0.591 0.678 0.825 0.791 0.695 0.729 0.867 0.665 0.708 0.732
Hard SPL 0.779 0.612 0.695 0.829 0.798 0.725 0.735 0.882 0.668 0.785 0.752
Ours 0.791 0.665 0.705 0.845 0.813 0.754 0.756 0.893 0.690 0.813 0.772

STAs

Quan et al. [6] 0.729 0.481 0.644 0.764 0.788 0.608 0.743 0.831 0.666 0.648 0.690
Chen et al. [12] 0.684 0.544 0.585 0.739 0.749 0.650 0.654 0.891 0.670 0.723 0.689
Joulin et al. [45] 0.279 0.336 0.239 0.378 0.319 0.236 0.334 0.435 0.363 0.260 0.318
Ours 0.791 0.665 0.705 0.845 0.813 0.754 0.756 0.893 0.690 0.813 0.772

Fig. 11. Examples show the reconstruction results of our method and the
Warpnet method [44], where the subfigure (a) shows the 3D points
reconstructed by our method and the subfigure (b) shows the 3D points
reconstructed by the Warpnet method. The reconstructed points are
shown from the image view and the 45 degree elevation of the image
view (i.e., other View).
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we can observe that our approach tends to converge within
five iterations. While the right two subfigures in Fig. 15
show that our approach could indeed obtain good perfor-
mance by the model obtained from the fifth training itera-
tion. These two subfigures do not show an obvious
convergence property as in the left figure as there are varia-
tions between the training data and testing data.

Furthermore, we also analyze the time consumption by
comparing our approaches with the most recent state-
of-the-art method [9]. The experiments are performed on a
24-core Lenovo Server with an Intel Xeon CPU of 2.8 GHz
and 64 GB RAM. Our method takes 8.93 hours for training,
which is slower than [9] (4.39 hours) as we need to addition-
ally infer the segmentation masks. During testing, our
method takes 38s per image, which is the same as [9]. In
terms of time complexity, our method is worse at the train-
ing stage. However, our method still has advantages after
considering other features including annotation costs.
According to our statistics in [14], the average time cost for
manually annotating image labels, keypoints, and segmen-
tation masks are 1.2s, 4.4s, and 256.1s per image, respec-
tively. The segmentation label takes 97.9 percent of the
entire human effort for annotating 2D images. This indicates
that our approach can save significant amount of human
effort for 3D shape reconstruction.

5 CONCLUSION

In this paper, we have proposed a novel framework to jointly
perform 3D object reconstruction and common segmentation
based on weakly annotated images. Our confidence weight-
ing strategy effectively guides and improves the training
process of the proposed framework. Comprehensive experi-
ments on PASCAL VOC have demonstrated the notable
performance of the proposed framework. Our approach sig-
nificantly reduces the manual annotation costs, and could
make it unprecedented cheap for learning 3D shape models
and thus potentially facilitate large-scale applications in the
future.

Essentially, there are still several open problems, such as,
lack of the keypoint labels [44], non-rigid objects, 3D object
reconstruction in fine scale. We plan to address these issues
by investigating an unsupervised framework for jointly esti-
mating the viewpoints and poses, and perform fine scale 3D
shape reconstruction based on the coarse scale 3D models,
viewpoints and poses.
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